
Propositional Calculus

Propositional Calculus, also called Sentential Calculus or Zeroth Order Logic, examines
the structure of certain fragment common both to natural languages as well as to lan-
guages of scientific theories, namely the abstract patterns or forms of propositions or
statements occurring in them as well as the relations between them which can be inferred
from their form. This will make possible a complete description of valid arguments in
terms of structural relations between the forms of their constituents.
We will take advantage of the fact that our readers have already some acquaintance

with Propositional Calculus, including the logical connectives and their meaning, truth
tables, tautologies, etc. This allows us to focus on some general “philosophical” features
of Propositional Calculus which are not always part of the usual courses and use this
familiar and rather elementary platform for the exposition of some topics and issues
which will reappear later on within the Predicate Calculus in a more advanced form.

Propositions and Propositional Forms

A propostion or a statement is an affirmative grammatical sentence making a meaningful
announcement which is either true or false, no matter whether we or whoever are able
to decide its verity. We say that the truth value of a proposition is 1 if it is true and it
is 0 if it is false.
Given some propositions we can form new ones combining them by means of the

unary logical connective not and the binary logical connectives and, or, if . . . then,
if and only if, either . . . or, neither . . . nor, etc. Propositional Calculus is based on
the following fundamental observation:

If A is a proposition formed of some simpler propositions p1, . . . , pn by means of
logical connectives in a certain way then the truth value of A can be determined just
out of the truth values of the propositions p1, . . . , pn and the way how A is formed,
regardless of the meaning and content of the propositions p1, . . . , pn.

In other words, the truth value of A can be computed from the truth values of its
components p1, . . . , pn and the abstract pattern or the form of A.
As a consequence, the subject of Propositional Calculus is not primarily propositions

themselves but the forms propositions can take on, according to the way how they are
composed from simpler propositions by means of logical connectives. These abstract
forms we call propositional forms; they are expressions (words) of some formal language
to be introduced below. In order to describe the syntax of the language of Propositional
Calculus we will codify its symbols and describe the way how its words are generated.
The language of Propositional Calculus has the following symbols divided into three

groups:

• Propositional variables: p, q, r, p0, p1, p2, . . . , q′, q′′, . . .
• Logical connectives: ¬ (not), ∧ (and), ∨ (or), ⇒ (if . . . then or implies),
⇔ (if and only if ) (two would suffice)

• Auxiliary symbols: ( , ) (parentheses ) (they could be avoided)
1
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We denote by P the set of all propositional variables. We assume that the set P is
countably infinite at least in the potential sense, i.e., whenever we have any finite list of
propositional variables p1, . . . , pn, we are able to find some new propositional variable
q not included in that list and, at the same time, all the propositional variables p ∈ P
can be set into a one-to-one correspondence with the natural numbers n ∈ N.
Propositional forms are certain finite strings, i.e., words, consisting of the above

quoted symbols. The set VF(P ) of all propositional forms over the set of propositional
variables P is defined recursively as the smallest set containing all the propositional vari-
ables and closed with respect to the application of logical connectives, i.e., the smallest
set satisfying the following two conditions:

1◦ P ⊆ VF(P )
(every propositional variable p ∈ P is a propositional form over the set P )

2◦ if A,B ∈ VF(P ) then ¬A, (A ∧B), (A ∨B), (A ⇒ B), (A ⇔ B) ∈ VF(P )
(if the strings A, B are propositional forms over the set P then so are the strings
¬A, (A ∧B), (A ∨B), (A ⇒ B) and (A ⇔ B))

According to 1◦, propositional variables are sometimes referred to as atomic proposi-
tional forms. As a consequence of the fact that the set P of all propositional variables
is countable, the set VF(P ) of all propositional forms over P is countable, as well.
The set VF(Q) of all propositional forms over any nonempty set of propositional

variables Q ⊆ P can be defined in an analogous way. In particular, for a finite set
Q = {p1, . . . , pn}, we denote

VF(Q) = VF(p1, . . . , pn)

Since every propositional form A ∈ VF(P ) is composed from atomic propositional forms
by applying the rule 2◦ just finitely many times, there always is a finite number of
propositional variables p1, . . . , pn ∈ P such that A ∈ VF(p1, . . . , pn).
If A, B are propositional forms then the propositional form ¬A is called the negation

of A, and the propositional forms (A ∧ B), (A ∨ B), (A ⇒ B) and (A ⇔ B) are called
the conjunction, the disjunction or the alternative, the implication and the equivalence
of A and B, respectively.

Remark. (a) According to the just stated definition not all finite strings of symbols
of the language of Propositional Calculus are propositional forms. For instance, the
expressions p, q, r, ¬p, (p ∧ q), (¬p ⇒ r), ((p ∧ q) ∨ (¬p ⇒ r)) can easily be recognized
as propositional forms, while the expressions like (p¬q), ¬pp ⇒)(r¬ obviously fail to
be propositional forms. Less obvious is the finding that neither the expressions p ∧ q,
¬p ⇒ r, (p∧ q)∨ (¬p ⇒ r) are propositional forms although we are inclined to recognize
them to be. In order to reconcile the above definition with our intuition and the usual
practice, we accept the convention of omitting the outermost parentheses (which clearly
are superfluous) in any propositional form. Thus we consider the expressions like p ∧ q,
¬p ⇒ r, (p ∧ q) ∨ (¬p ⇒ r) as denoting the propositional forms (p ∧ q), (¬p ⇒ r),
((p ∧ q) ∨ (¬p ⇒ r)), respectively.

(b) We could completely manage without the parentheses using the Polish notation.
In that case point 2◦ of the above definition would be modified as follows:
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2∗ if A,B ∈ VF(P ) then ¬A, ∧AB, ∨AB, ⇒AB, ⇔AB ∈ VF(P )
(if the strings A, B are propositional forms over the set P then so are the strings
¬A, ∧AB, ∨AB, ⇒AB and ⇔AB)

For instance, in Polish notation the propositional form (p ∧ q) ∨ (¬p ⇒ r) would be
written as

∨∧pq⇒¬pr

However cumbersome and hardly legible this expression may appear to us, it should be
realized that from the point of view of a computer assisted processing this aspect is of
almost no importance.

(c) In spite of the names we have attached to the logical connectives pointing to
their intended role, they should be regarded as mere graphical symbols deprived of any
meaning for the moment. They will only acquire their usual meaning later on, when we
develop the semantics of Propositional Calculus.

(d) It should be noted that the signs A, B, C used to denote arbitrary propositional
forms, the sign P and the expression VF(P ) denoting the set of all propositional variables
and the set of all propositional forms, respectively, etc., do not belong to the language
of Propositional Calculus— they are symbols or expressions of certain metalanguage we
use in the study of Propositional Calculus.

Let us turn reader’s attention to the point that VF(P ) is the smallest set satisfying
conditions 1◦ an 2◦. This inconspicuous requirement endows us with a powerful tool for
proving facts about propositional forms, namely with the proof method by induction on
complexity : In order to establish that all propositional forms have some property it is
enough to show that the set of all propositional forms having this property satisfies the
above conditions 1◦ and 2◦.

Theorem. Let M ⊆ VF(P ) be any set of propositional forms satisfying the following
two conditions:
1◦ P ⊆ M

(every propositional variable p ∈ P belongs to the set M)
2◦ if A,B ∈ M then ¬A, A ∧B, A ∨B, A ⇒ B, A ⇔ B ∈ M

(M is closed with respect to the formation of propositional forms by means of logical
connectives)

Then M = VF(P ), i.e., every propositional form over P belongs to M .

The reader should compare the induction on complexity with the usual method of
induction, used in proving that certain property holds for all natural numbers: Since
the set N of all natural numbers is the smallest set containing 0 and closed with respect
to the successor operation n 7→ n+1, in order to show that certain set M ⊆ N contains
all natural numbers, i.e., M = N, it is enough to show that 0 ∈ M and, for every n ∈ M
also n+ 1 ∈ M . In the induction on complexity the role of the number 0 ∈ N is played
by the propositional variables p ∈ P , and the role of the successor operation is played by
the logical connectives. Already in this moment it could be anticipated that for the sake
of induction proofs it would be desirable to reduce the number of logical connectives for
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which the step 2◦ has to be performed to some minimal list. We will return to this point
in the next paragraph.

Interpretations, Truth Tables and Logical Equivalence

Next to syntax we will develop the semantics of Propositional Calculus. Let us recall that
in Logic we take no account of the content of propositions, and the propositional forms
are indeed deprived of any content. Nevertheless, we can still examine the situations
under which they become true or false. These situations will be called interpretations or
truth evaluation and they will represent the way of assigning however limited but still
certain meaning to propositional forms.
We start by introducing the boolean algebraic operations on the two element set {0, 1}

of the truth values 0 (false) and 1 (true), corresponding to the logical connectives and
denoted by the same symbols. They are given by the following tables:

¬ 0 1
1 0

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

⇒ 0 1
0 1 1
1 0 1

⇔ 0 1
0 1 0
1 0 1

In Propositional Calculus an intepretation or a truth evaluation is any mapping
I : P → {0, 1}, i.e., any assignment of truth values 0 or 1 to the propositional vari-
ables. Intuitively, such an interpretation represents a possible situation described in
terms of the assignment of truth values to the propositional variables.
Every interpretation I : P → {0, 1} will be extended to a mapping I : VF(P )→ {0, 1},

denoted by the same symbol and still called an interpretation or a truth evaluation, by
means of the following recursive definition

I(¬A) = ¬I(A) I(A ∧B) = I(A) ∧ I(B) I(A ⇒ B) = I(A)⇒ I(B)

I(A ∨B) = I(A) ∨ I(B) I(A ⇔ B) = I(A)⇔ I(B)

for any A,B ∈ VF(P ), assuming that the values I(A) and I(B) have already been
defined. Instead of I(A) = 1 we say that A is true or satisfied in the interpretation I;
I(A) = 0 means that A is false in the interpretation I.
The reader should realize the following two facts:
• In each of the above equalities the signs ¬, ∧, ∨,⇒,⇔ denote the logical connectives
on the left side while on the right side they denote the corresponding boolean
operations on the set {0, 1}.

• The equality symbol = and the signs I, J , denoting arbitrary truth evaluations,
belong to our metalanguage and not to the language of Propositional Calculus itself.

Just from this moment on, and by the virtue of the tables of the operations ¬, ∧,
∨, ⇒ and ⇔ on the set {0, 1} of the truth values, the corresponding logical connectives
can rightfully bear their names of negation, conjunction, alternative or disjunction (in
nonexclusive sense), implication and equivalence, respectively.
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It can be easily realized that the above recursive definition is redundant in some
sense. It would be enough to describe the extension of the mapping I : P → {0, 1}
according to the negation ¬ and one (and anyone) of the binary connectives ∧, ∨, ⇒;
then the remaining equalities would be satisfied, as well. In other words, a mapping
I : VF(P ) → {0, 1} is (an extension of) an interpretation if and only if it satisfies the
equality I(¬A) = ¬I(A), and one (and anyone) of the equalities I(A∧B) = I(A)∧I(B),
I(A ∨ B) = I(A) ∨ I(B), I(A ⇒ B) = I(A) ⇒ I(B) for all A,B ∈ VF(P ). Then it
automatically satisfies the remaining equalities, as well. As a consequence, the notion
of an interpretation (truth evaluation) could be defined in a more elegant way, as a
mapping I : VF(P )→ {0, 1} preserving the operations of the algebras (VF(P ); ∧,∨,¬),
({0, 1}; ∧,∨,¬), i.e., as a homomorphism I : (VF(P ); ∧,∨,¬)→ ({0, 1}; ∧,∨,¬).
Let us make the just discussed point more precise. We call two propositional forms

A,B ∈ VF(P ) logically equivalent if I(A) = I(B) for every interpretation I : P → {0, 1};
in that case we write A ≡ B. (It should be realized that the sign ≡, similarly as the signs
A, B, C, P , I, J or the expression VF(P ), etc., does not belong to the symbols of the
language of Propositional Calculus— it is a symbol of our metalanguage, again.) The
reader is asked to verify that the relation of logical equivalence ≡ is reflexive, symmetric
and transitive, hence it is indeed an equivalence relation on the set VF(P ).
It is known that any of the pairs (¬,∧), (¬,∨), (¬,⇒) forms a complete list of logical

connectives, i.e., any propositional form A ∈ VF(P ) is logically equivalent to some
propositional form A′ containing the same propositional variables as A and involving
just the logical connectives from one (and anyone) of the three pairs above.
Choosing the connectives ¬, ∧ as the primitive ones, the remaining connectives could

be introduced as abbreviations for the propositional forms on the right:

A ∨B ≡ ¬(¬A ∧ ¬B)
A ⇒ B ≡ ¬(A ∧ ¬B)
A ⇔ B ≡ ¬(A ∧ ¬B) ∧ ¬(¬A ∧B)

Choosing ¬ and ∨ as primitive connectives we would have

A ∧B ≡ ¬(¬A ∨ ¬B)
A ⇒ B ≡ ¬A ∨B

A ⇔ B ≡ ¬(¬(A ∨ ¬B) ∨ ¬(¬A ∨B))

Finally, if our primitive connectives were ¬ and ⇒, we would have

A ∧B ≡ ¬(A ⇒ ¬B)
A ∨B ≡ ¬A ⇒ B

A ⇔ B ≡ (A ⇒ ¬B)⇒ ¬(¬A ⇒ B)

It follows that we could have used just the binary connective ¬ and just one (and
anyone) from among the three binary connectives ∧, ∨, ⇒ in the recursive definition of
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the notion of propositional form in the previous paragraph; the forth binary connective
⇔ becomes superfluous in any case.
Additionally, we will make use of the logical equivalences of associativity of the con-

nectives ∧ and ∨

(A ∧B) ∧ C ≡ A ∧ (B ∧ C) and (A ∨B) ∨ C ≡ A ∨ (B ∨ C)

for any propositional forms A,B,C ∈ VF(P ). This allows us to omit the superfluous
parenthesis in conjunctions and alternatives of an arbitrary finite number of proposi-
tional forms and write simply A ∧ B ∧ C, A ∨ B ∨ C, A1 ∧ . . . ∧ Am, B1 ∨ . . . ∨ Bn,
etc.
It is worthwhile to notice that we could manage with a single binary connective,

namely the Sheffer stroke | (the NAND operator) which can be expressed by means of
¬ and ∧, or by means of ¬ and ∨ as follows

A|B ≡ ¬(A ∧B) ≡ ¬A ∨ ¬B

Conversely, the standard logical connectives ¬, ∧ and ∨ can be expressed in terms of
the Sheffer stroke as follows

¬A ≡ A|A
A ∧B ≡ (A|B)|(A|B)
A ∨B ≡ (A|A)|(B|B)

The task to find the corresponding expressions for A ⇒ B and A ⇔ B is left to the
reader.
Another single logical connective capable to generate all the remaining ones is the

NOR operator †, also known as the Peirce arrow or Quine dagger, which is dual to the
Sheffer stroke. In terms of ¬ and ∧, or ¬ and ∨, respectively, it can be expressed as
follows

A †B ≡ ¬A ∧ ¬B ≡ ¬(A ∨B)

The reader is asked to express the usual logical connectives ¬, ∧ and ∨, ⇒ and ⇔ in
terms of the Quine dagger †, and, at the same time to find the expressions for the Sheffer
stroke in terms of the Quine dagger and vice versa.

Tautologies and Other Classes of Propositional Forms

Using the concept of interpretation we can single out several important classes of propo-
sitional forms. A propositional form A ∈ VF(P ) is called

• a tautology if I(A) = 1 for every interpretation I : P → {0, 1}
• a contradiction if I(A) = 0 for every interpretation I : P → {0, 1}
• satisfiable if I(A) = 1 for at least one interpretation I : P → {0, 1}
• refutable if I(A) = 0 for at least one interpretation I : P → {0, 1}
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There is a twofold duality between the four notions above: the inner duality

• A is a tautology if and only if ¬A is a contradiction
• A is satisfiable if and only if ¬A is refutable

and the outer duality

• A is a tautology if and only if A is not refutable
• A is a contradiction if and only if A is not satisfiable

It can be easily seen that, for any propositional forms A, B, we have A ≡ B if and
only if the propositional form A ⇔ B is a tautology.
The question whether an arbitrary propositional form A belongs to any of the four

classes defined above can be decided algorithmically using the method of truth tables,
evaluating the truth values I(A) for all the interpretations I : P → {0, 1}. In view of
the fact that, for an infinite set P , there are infinitely many such interpretations, it is
important that to that end it is enough to deal just with finitely many of them.

Theorem. Let A ∈ VF(P ) be any propositional form such that all the propositional
variables occurring in A are included in the list p1, . . . , pn. Then I(A) = J(A) for any
truth evaluations I, J : P → {0, 1} such that I(pk) = J(pk) for each k = 1, . . . , n.

In other words, the value I(A) of a truth evaluation I on a propositional form A
depends on the values of I on the finite set of propositional variables occurring in A,
only. However obvious and intuitively clear this fact may appear, we nonetheless prove
it, mainly in order to illustrate the proof method by induction on complexity.

Demonstration. Denoting Q = {p1, . . . , pn} and

M = {A ∈ VF(Q) : I(A) = J(A)}

we are to show that M = VF(Q). Since I and J coincide on the set Q, we have Q ⊆ M ,
which is the initial induction step 1◦. In order to verify the induction step 2◦, assume
that A,B ∈ M , i.e., A,B ∈ VF(Q), and I(A) = J(A) as well as I(B) = J(B). Then, as
both I, J preserve the logical connectives,

I(¬A) = ¬I(A) = ¬J(A) = J(¬A)
I(A ∧B) = I(A) ∧ I(B) = J(A) ∧ J(B) = J(A ∧B)

hence both ¬A,A ∧B ∈ M . Similarly, we could show that A ∨B,A ⇒ B,A ⇔ B ∈ M ,
too. However, in view of our previous accounts, it is clear that the induction step 2◦ for
the connectives ∨, ⇒ and ⇔ is not necessary to perform.

Example. Using the truth table method, it can be easily shown that the following
propositional form

(p ⇒ (q ⇒ r))⇔ ((p ∧ q)⇒ r)

is a tautology. Denoting by L the propositional form p ⇒ (q ⇒ r) and by R the
propositional form (p ∧ q)⇒ r, we have
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p q r q ⇒ r L p ∧ q R L ⇔ R

1 1 1 1 1 1 1 1
1 1 0 0 0 1 0 1
1 0 1 1 1 0 1 1
0 1 1 1 1 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1
0 0 1 1 1 0 1 1
0 0 0 1 1 0 1 1

As a consequence,
A ⇒ (B ⇒ C) ≡ (A ∧B)⇒ C

for any propositional forms A, B, C.
More important and interesting than filling in mechanically the above truth table it

is to realize what kind of logical law, called the Law of Exportation, is expressed by this
tautology or by the above logical equivalence. The left hand form A ⇒ (B ⇒ C) states
that “if A, then B implies C”. The right hand form (A∧B)⇒ C states that “A and B
jointly imply C”. These two forms of statements are always equivalent: going from the
left to the right it is possible to join the two assumptions A, B to a single assumption
A∧B; going from the right to the left it is possible to divide the assumption A∧B into
its constituents A and B and apply them consecutively one after the other.

Exercise. A propositional form is called an elementary conjunction if it has the shape
B1 ∧ . . .∧Bm where each of the forms Bi is either a propositional variable or a negation
of some propositional variable. A propositional form is called a disjunctive normal form
if it has the shape C1∨ . . .∨Ck where each of the forms Cj is an elementary conjunction.
Show that every propositional form A ∈ VF(p1, . . . , pn) is logically equivalent to some
disjunctive normal form A′ ∈ VF(p1, . . . , pn). To this end design an algorithmic method
how to obtain the disjunctive normal form A′ ≡ A from the truth table of the form A.
Similarly, define the dual notions of an elementary disjunction and of a conjunctive

normal form and show that every propositional form is logically equivalent to some
conjunctive normal form.

Exercise. Let A ∈ VF(p1, . . . , pn) be a propositional form in propositional variables
p1, . . . , pn and B1, . . . , Bn ∈ VF(P ) be arbitrary propositional forms. We denote by
A(B1, . . . , Bn) the propositional form obtained by substituting the forms B1, . . . , Bn

into the form A in places of the variables p1, . . . , pn, respectively. For instance, if A
is the form (p ∧ ¬q) ⇒ (q ∨ r) in propositional variables p, q, r and B, C, D are the
propositional forms r ∨ s, p ⇒ ¬r, q, respectively, then A(B,C,D) denotes the form

((r ∨ s) ∧ ¬(p ⇒ ¬r))⇒ ((p ⇒ ¬r) ∨ q)

(a) Demonstrate that if A is a tautology (contradiction) then A(B1, . . . , Bn) is also a
tautology (contradiction) for any B1, . . . , Bn.
(b) Give examples of a satisfiable (refutable) form A and of forms B1, . . . , Bn such

that A(B1, . . . , Bn) is not satisfiable (refutable).
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Theories in Propositional Calculus

In common language the word theory usually refers to some interconnected system of
knowledge, consisting of statements about certain topic and including also a method-
ology of obtaining and verifying or refuting these statements. The statements or proposi-
tions forming the “body of knowledge” of the theory could have been obtained in various
ways: some of them may express certain empirical facts established by observation or
experiments, some of them may be a part of common beliefs, tradition or cultural her-
itage, some of them may be mere hypotheses to be verified or refuted in the future, and,
finally, some of them may be derived from any of the previously mentioned ones as their
logical consequences.
Following the leading intention of logic, we will ignore the content, methodology and

the overall character of a theory, we will neither distinguish which of its postulates are
true or false, which are firmly established and which are mere hypotheses, nor take care
of the way how all that happened. We will bring to the focus just a single aspect of
all such theories, namely the structure of logical inference, i.e., the way new statements
necessarily follow or can be derived from those made into the departing postulates or
axioms of the particular theory.
Accordingly, a propositional theory or simply a theory is any set T ⊆ VF(P ) of propo-

sitional forms; its elements A ∈ T are called the specific axioms or just the axioms of
T . We warn the readers not to take this definition word for word, not even within the
framework of Propositional Calculus, let alone when speaking about a broader perspec-
tive. It should rather be understood as stating that, within Propositional Calculus, a
theory is given or uniquely determined by the set of its specific axioms. Propositional
Calculus will take care of the rest, i.e., of the structure of logical inference, which is the
same for all the theories.
An interpretation I : VF(P ) → {0, 1} is called an interpretation of the theory T if

I(A) = 1 for each A ∈ T , i.e., if all the axioms of T are true in the interpretation
I. Intuitively, an interpretation of the theory T represents a situation in which all the
axioms of the theory T , hence T itself, are satisfied.
A propositional form B is a logical consequence of the axioms of a theory T or just

a logical consequence of T if I(B) = 1 for every interpretation I of the theory T .
Alternatively we say that B is true or valid or satisfied in T , or that T entails B. In
symbols we write T ⊨ B. Intuitively, T ⊨ B means that, in every possible situation in
which all the axioms of the theory T are satisfied, B is satisfied as well.
Instead of ∅ ⊨ B we write just ⊨ B; it means that B is true under every interpretation

I : P → {0, 1}, in other words, B is a tautology.
As it follows from the theorem below, the question whether T ⊨ B can be algorithmi-

cally decided using truth tables, for any theory T with just finitely many specific axioms
and each propositional form B ∈ VF(P ).

Theorem. Let T = {A1, . . . , An} be a theory with finitely many specific axioms and
B ∈ VF(P ). Then T ⊨ B if and only if the propositional form (A1 ∧ . . . ∧ An) ⇒ B is
a tautology.
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Demonstration. Assume that T ⊨ B. Let I : VF(P ) → {0, 1} be any interpretation.
Then either I(Ak) = 0 for at least one k = 1, . . . , n, or I(Ak) = 1 for each k = 1, . . . , n.
In the first case I(A1 ∧ . . . ∧An) = 0, therefore,

I((A1 ∧ . . . ∧An)⇒ B) = 1

In the second case I is an interpretation of the theory T , hence I(B) = 1 since T ⊨ B.
Then

I((A1 ∧ . . . ∧An)⇒ B) = 1

again. Thus (A1 ∧ . . . ∧An)⇒ B is indeed a tautology.
Conversely, assume that (A1 ∧ . . . ∧ An) ⇒ B is a tautology, i.e., it is true in every

interpretation I. If I is an interpretation of T , then I(A1 ∧ . . . ∧An) = 1. Thus

I((A1 ∧ . . . ∧An)⇒ B) = 1

can happen only if I(B) = 1, too. It follows that T ⊨ B.

In general, however, T may have infinitely many specific axioms. Even in that case,
in order to show that B is not a logical consequence of T , i.e., T ̸⊨ B, it is enough to
find a single interpretation I of T such that I(B) = 0. If this is the case, then we say
that (the validity of) B in T was refuted by a counterexample. However, in order to
confirm that T ⊨ B, the definition requires of us to determine the truth value I(B) for
infinitely many interpretations of T , which seems to be an unrealizable task.
In mathematics, however, the usual way how to establish the validity of some state-

ment within some theory is by proving it from the axioms of the theory and not by
examining all the possible situations in which these axioms are true and checking the
validity of the statement in each of these situations. Also in Propositional Calculus we
will develop the syntactic concepts of proof and provability with the aim to get in grasp
with the semantic concept of validity or truth by means of them.

Axiomatization of Propositional Calculus

In order to have a brief and concise axiomatization of Propositional Calculus we will
proceed as if the set VF(P ) of all propositional forms were built of the propositional
variables by means of the logical connectives ¬ and⇒, only. Thus the remaining logical
connectives are considered as certain abbreviations displayed in the previous paragraph.
An alternative axiomatization using the logical connectives ¬, ∧, ∨ and⇒ can be found
in the Appendix to this Chapter.

Logical axioms. (4 axiom schemes)
For any propositional formsA, B, C, the following propositional forms are logical axioms:

(LAx 1) A ⇒ (B ⇒ A)
(LAx 2) (A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C))
(LAx 3) (A ⇒ B)⇒ ((A ⇒ ¬B)⇒ ¬A)
(LAx 4) ¬¬A ⇒ A
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Additionally, we have a single deduction rule or rule of inference:

Deduction rule Modus Ponens

(MP)
A, A ⇒ B

B
(from A and A ⇒ B infer B)

Exercise. (a) Show that all the logical axioms are tautologies and explain their intuitive
meaning.
(b) Show that the inference rule Modus Ponens is correct in the following sense:

If I : VF(P )→ {0, 1} is any interpretation and A,B ∈ VF(P ) are propositional forms
such that I(A) = I(A ⇒ B) = 1, then I(B) = 1, as well.

A proof in the theory T ⊆ VF(P ) is a finite sequence A0, A1, . . . , An of propositional
forms such that every item Ak is either a logical axiom, or a specific axiom of the theory
T (i.e. Ak ∈ T ), or it follows from the previous items by the rule (MP) (i.e., there are
i, j < k such that Aj has the form Ai ⇒ Ak).

A propositional form B is provable in a theory T if there is a proof A0, A1, . . . , An in
T such that its last item An coincides with B. In symbols, T ⊢ B. Instead of ∅ ⊢ B we
write just ⊢ B; it means that B is provable from the logical axioms, only.

Remark. The above axiomatization of Propositional Calculus is by far not the only
possible one. As already mentioned, an alternative axiomatization can be found in the
Appendix. Both of these axiomatizations contain infinitely many axioms (listed in form
of finitely many axiom schemes) and a single rule of inference. Such axiomatizations
are referred to as Hilbert style axiomatizations featured by “many” logical axioms and
“few” rules of inference. On the other hand, the Gentzen style axiomatizations contain
“many” rules of inference and just “few” logical axioms (or even none, replacing a logical
axiom A by the deduction rule A with meaning derive A out of nothing). In general,
Hilbert style axiomatizations are better suited for the description, study and analysis of
the formal logical system itself, while Gentzen style axiomatizations are more effective
in applications like logical programming or automatic theorem proving. However, as
far as they serve as axiomatizations of the classical Propositional Calculus, they are all
equivalent in the sense that they produce the same family of provable forms.

Exercise. Show that, for any propositional forms A, B, the following propositional
forms are tautologies, and that they all are provable just from the logical axioms:
(a) A ⇒ A
(b) A ⇒ ¬¬A
(c) ¬A ⇒ (A ⇒ B)
(d) (¬B ⇒ ¬A)⇒ (A ⇒ B)
(e) (A ⇒ B)⇒ (¬B ⇒ ¬A)
(f) (A ⇒ (¬B ⇒ ¬(A ⇒ B)))
(g) (A ⇒ B)⇒ ((¬A ⇒ B)⇒ B)
(h) (¬A ⇒ A)⇒ A

As an example (a rather deterring one) we just show that for every propositional form
A the form in (a) is provable from the logical axioms.
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1. (A ⇒ ((A ⇒ A)⇒ A))⇒ ((A ⇒ (A ⇒ A))⇒ (A ⇒ A))
(LAx 2), taking A for both A and C and A ⇒ A for B

2. A ⇒ ((A ⇒ A)⇒ A)
(LAx 1), taking A for A and A ⇒ A for B

3. (A ⇒ (A ⇒ A))⇒ (A ⇒ A)
follows from 1. and 2. by (MP)

4. A ⇒ (A ⇒ A)
(LAx 1), taking A for both A and B

5. A ⇒ A

follows from 3. and 4. by (MP)

Exercise. Sow that the axiom schemes (LAx 3) and (LAx 4) can be replaced by a single
axiom scheme

(LAx 5) (¬A ⇒ B)⇒ ((¬A ⇒ ¬B)⇒ A)

To this end show that every instance of the scheme (LAx 5) is provable from some
instances of the schemes (LAx 1), (LAx 2), (LAx 3), (LAx 4), and vice versa, all instances
of the schemes (LAx 3), (LAx 4) are provable from some instances of the schemes (LAx 1),
(LAx 2), (LAx 5).

The Soundness Theorem

Having introduced the axiomatization of Propositional Calculus we are facing the task
to establish that it is sound or correct in the following sense: For every theory T ⊆
VF(P ), all the propositional forms provable in T are satisfied in T . Otherwise it could
happen that for some propositional form B provable in T it would be possible to find an
interpretation I of T such that I(B) = 0. Such an I would represent a situation in which
all the axioms of T were satisfied, nevertheless, B were false. Thus we could be able
to prove false conclusions from the axioms of T which would be a disaster witnessing a
collapse of our axiomatization. Therefore it is of crucial importance that we have the
following

Soundness Theorem. Let T ⊆ VF(P ) be a theory. Then, for every propositional
form B ∈ VF(P ), if T ⊢ B then T ⊨ B.

Demonstration. Let T ⊢ B and A0, A1, . . . , An be a proof of B in T . We will show that
I(Ak) = 1 for every interpretation I of the theory T and each k ≤ n. Then, of course,
I(B) = 1, since B is An. Each Ak is either a logical axiom, in which case I(Ak) = 1
for every interpretation I, or a specific axiom of T , in which case I(Ak) = 1 as I is an
interpretation of T , or Ak follows from some previous items Ai, Aj by (MP). Assuming
that we already have proved that I(Ai) = I(Aj) = 1, we can conclude I(Ak) = 1, too,
since, as we already have noted, the rule (MP) is correct.
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Remark. Let us turn the reader’s attention to the fact that—however simple and
transparent the above argument might appear— it contains a kind of vicious circle. In
the demonstration of the Soundness Theorem we have been using logical deduction and
inference within the natural language extended by some fairly simple mathematical no-
tation. Thus we have used in an informal way the same logical means the soundness
of which we wanted to establish within the formalized Propositional Calculus. Strictly
speaking, the formal counterpart of the informal logical means we have been using goes
even beyond Propositional Calculus: since our arguments contain some quantification,
they interfere already with the Predicate Calculus. It is important to realize that we are
unable to prove the Soundness Theorem out of nothing, without assuming some minimal
logical fragment of natural language as granted. Thus what we have achieved is noth-
ing more and nothing less than the understanding and realization that our formalized
axiomatization of Propositional Calculus is in good accord with the logical structure of
deduction and inference within our natural language.

Later on we will also establish the converse of the Soundness Theorem.

Completeness Theorem. Let T ⊆ VF(P ) be a theory. Then, for every propositional
form B ∈ VF(P ), if T ⊨ B then T ⊢ B.

Remark. It is illuminating to compare the status of the Completeness Theorem with
that of the Soundness Theorem. As we have seen, the demonstration of the Soundness
Theorem was fairly simple. On the other hand, as we shall see later on, the demonstra-
tion of the Completeness Theorem will be considerably more involved. While the failure
of the Soundness Theorem would cause a collapse of our axiomatization of Propositional
Calculus, the consequences of a possible failure of the Completeness Theorem would be,
at least at first glance, less dramatic: It would just mean that our axiomatization of
Propositional Calculus is not powerful enough and we should look for some additional
logical axioms and/or deduction rules extending our original list in order to achieve
its completeness. Then, however, we would have to face a more delicate question: Is
it at all possible to achieve completeness in our axiomatization without destroying its
soundness? Namely, the Soundness Theorem and the Completeness Theorem together
answer this question affirmatively and guarantee that the relation between the syntax
and semantics of Propositional Calculus is carefully balanced.

Later on, when dealing with an analogous issue for Predicate Calculus, we will quote
an example of its certain fairly natural fragment not admitting any axiomatization sat-
isfying both the Soundness and the Completeness Theorem.

The Deduction Theorem and Its Corollaries

On the way to the demonstration of the Completeness Theorem we are going to state
a handful of results which are of independent interest in their own right. In their
demonstrations we will use the notation A ≈ B, expressing that the characters A and
B denote the same propositional form. The symbol ≈ belongs to our metalanguage and
not to the language of Propositional Calculus itself, similarly as the symbols A, B, P ,
VF, I, ≡ , etc.
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Deduction Theorem. Let T ⊆ VF(P ) be a theory and A,B ∈ VF(P ) be propositional
forms. Then T ⊢ A ⇒ B if and only if T ∪ {A} ⊢ B.

Demonstration. Let T ⊢ A ⇒ B. Then the more T ∪ {A} ⊢ A ⇒ B. Obviously,
T ∪ {A} ⊢ A, from which we get T ∪ {A} ⊢ B by (MP). Namely, if C0, C1, . . . , Cn is a
proof of A ⇒ B in T ∪ {A}, then C0, C1, . . . , Cn, A,B is a proof of B in T ∪ {A}.
Conversely, let T ∪ {A} ⊢ B. First we take care of the following two trivial cases:

(a) B is a logical axiom or B ∈ T . Then B, B ⇒ (A ⇒ B) (LAx 1), A ⇒ B is a proof
of A ⇒ B in T .

(b) B ≈ A. Then ⊢ A ⇒ A (Exercise (a)), hence the more T ⊢ A ⇒ A.

Otherwise there must be a proof B0, B1, . . . , Bn of B in the theory T ∪ {A} such that
n ≥ 2 and Bn (i.e. B) follows from some previous items of this sequence by (MP).
We will proceed by induction according to n. To this end we assume that the needed
conclusion is valid for all proofs C0, C1, . . . , Cm in T ∪ {A}, where m < n. Let j, k < n
be such that Bj ≈ (Bk ⇒ Bn). Then both B0, . . . , Bj and B0, . . . , Bk are proofs in
T ∪ {A}. By the induction assumption we have T ⊢ A ⇒ Bj , i.e., T ⊢ A ⇒ (Bk ⇒ Bn),
as well as T ⊢ A ⇒ Bk. Then

(A ⇒ (Bk ⇒ Bn))⇒ ((A ⇒ Bk)⇒ (A ⇒ Bn))

is (LAx 2), and by (MP) we consecutively get

T ⊢ (A ⇒ Bk)⇒ (A ⇒ Bn)

T ⊢ A ⇒ Bn

i.e., T ⊢ A ⇒ B.

The reader should notice that it is the “harder” implication

If T ∪ {A} ⊢ B then T ⊢ A ⇒ B

which is frequently used in mathematical proofs as well as in many deductive arguments
elsewhere. A typical direct proof of the implication A ⇒ B out of a list (theory) T
of assumptions (axioms) starts with the “ritual” formulation: “Let A”, or “Assume
that A”. This is nothing else than extending the axiom list T by a new axiom A. We
continue by a sequence of statements C1, . . . , Cn formed according to some deductive
rules and finish once we succeed to arrive at the final term B. However, strictly speaking,
what we have produced that way is a proof of B within the theory T ∪ {A} and not
a proof of the implication A ⇒ B in T as we claim. The Deduction Theorem shows
that this natural method of argumentation is legitimate within Propositional Calculus,
justifying our claim.

Another way of proving a statement out of some list of assumptions is the proof by
contradiction. Instead of proving A in T directly, we produce a contradiction with the
axioms of T out of the negation of A. Also this method is legitimate in Propositional
Calculus.
A theory T is called contradictory or inconsistent if there exists some propositional

form A such that both T ⊢ A and T ⊢ ¬A. Otherwise, T is called consistent. From
the Exercise (c) it follows that every propositional form B is provable in an inconsistent
theory T .
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Corollary on Proof by Contradiction. Let T ⊆ VF(P ) be a theory and A ∈ VF(P )
be a propositional form. Then T ⊢ A if and only if the theory T ∪{¬A} is contradictory
(inconsistent).

Demonstration. Let T ⊢ A. The more T ∪ {¬A} ⊢ A. Since, clearly, T ∪ {¬A} ⊢ ¬A,
the theory T ∪ {¬A} is contradictory.
Conversely, let the theory T ∪{¬A} be contradictory. Then every propositional form

is provable in this theory; in particular, T ∪ {¬A} ⊢ A. Then T ⊢ ¬A ⇒ A by the
Deduction Theorem. According to Exercise (h), ⊢ (¬A ⇒ A) ⇒ A, and the more
T ⊢ (¬A ⇒ A)⇒ A. Using (MP) we get T ⊢ A.

Sometimes we are unable to find a proof of a statement B in a theory T , however, we
are able to prove B under some additional assumption A in one way, and in another way
under the opposite assumption ¬A. Then, all the same, it follows that B is provable in
T . This way of argumentation is legitimate in Propositional Calculus, as well.

Corollary on Proof by Distinct Cases. Let T ⊆ VF(P ) be a theory and A,B ∈
VF(P ) be propositional forms. Then T ∪ {A} ⊢ B and T ∪ {¬A} ⊢ B if and only if
T ⊢ B.

Demonstration. Assume that T ∪ {A} ⊢ B and T ∪ {¬A} ⊢ B. According to the
Deduction Theorem it follows T ⊢ A ⇒ B and T ⊢ ¬A ⇒ B. By Exercise (g) we have

⊢ (A ⇒ B)⇒ ((¬A ⇒ B)⇒ B)

and applying (MP) twice we get T ⊢ B.
Conversely, let T ⊢ B. Then, trivially, T ∪ {A} ⊢ B, as well as T ∪ {¬A} ⊢ B.

Exercise. Let T ⊆ VF(P ) be a theory and A1, . . . , An, B ∈ VF(P ) be propositional
forms such that T ⊢ A1 ∨ . . . ∨An. Show that T ⊢ B if and only T ∪ {Ai} ⊢ B for each
i = 1, . . . , n.

The Completeness Theorem

We start with a technical lemma. Given any interpretation I : VF(P ) → {0, 1} and a
propositional form A ∈ VF(P ) we denote

AI ≈
{

A if I(A) = 1

¬A if I(A) = 0

In other words, AI is namely that member of the couple A, ¬A which is true in I, i.e.,
I(AI) = 1.
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Lemma on Interpretation. [A. Church] Let p1, . . . , pn ∈ P and A ∈ VF(p1, . . . , pn).
Then for any interpretation I : VF(P )→ {0, 1} we have{

pI1, . . . , p
I
n

}
⊢ AI

Demonstration. By induction on complexity of A:

(a) If A ≈ p ∈ P , then the statement means that {p} ⊢ p, if I(p) = 1, or {¬p} ⊢ ¬p,
if I(p) = 0. In both cases we get the needed conclusion.

(b) Let A ≈ ¬B and our conclusion be true for B. Then B ∈ VF(p1, . . . , pn).
If I(A) = 1, then I(B) = 0 and AI ≈ A ≈ ¬B ≈ BI . By the assumption,{

pI1, . . . , p
I
n

}
⊢ BI , i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

If I(A) = 0, then I(B) = 1, BI ≈ B and AI ≈ ¬A ≈ ¬¬B. By the assump-
tion

{
pI1, . . . , p

I
n

}
⊢ BI , i.e.,

{
pI1, . . . , p

I
n

}
⊢ B. According to Exercise (b) we have

⊢ B ⇒ ¬¬B, and by (MP) we get
{
pI1, . . . , p

I
n

}
⊢ ¬¬B, i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

(c) Let A ≈ (B ⇒ C) and forB, C the conclusion is true. ThenB,C ∈ VF(p1, . . . , pn).
We distinguish three cases:

1. I(B) = 0. Then I(A) = I(B ⇒ C) = 1, i.e., AI ≈ A. Further, BI ≈ ¬B, hence,
by the induction assumption,

{
pI1, . . . , p

I
n

}
⊢ ¬B. According to Exercise (c) we have

⊢ ¬B ⇒ (B ⇒ C) and by (MP) we get
{
pI1, . . . , p

I
n

}
⊢ B ⇒ C, i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

2. I(C) = 1. Then CI ≈ C and I(A) = I(B ⇒ C) = 1, hence AI ≈ A. By the
induction assumption,

{
pI1, . . . , p

I
n

}
⊢ C. (LAx 1) gives ⊢ C ⇒ (B ⇒ C), and by (MP)

we get
{
pI1, . . . , p

I
n

}
⊢ B ⇒ C, i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

3. I(B) = 1, I(C) = 0. Then BI ≈ B, CI ≈ ¬C and I(A) = I(B ⇒ C) = 0, hence
AI ≈ ¬A. By the induction assumption,

{
pI1, . . . , p

I
n

}
⊢ B and

{
pI1, . . . , p

I
n

}
⊢ ¬C.

Exercise (f) gives ⊢ B ⇒ (¬C ⇒ ¬(B ⇒ C)). Using (MP) twice we get
{
pI1, . . . , p

I
n

}
⊢

¬(B ⇒ C), i.e.,
{
pI1, . . . , p

I
n

}
⊢ AI .

Exercise. Let Q = {p1, . . . , pn} ⊆ P be a finite set of propositional variables and
A ∈ VF(Q). Let

TE(A) =
{
I : Q → {0, 1} : I(A) = 1

}
= {I1, . . . , Im}

denote the set of all truth evaluations I on the set of propositional variables Q such that
A is true in I. Obviously, m ≤ 2n. For each I ∈ TE(A) we denote by

CI = pI1 ∧ . . . ∧ pIn

the elementary conjunction corresponding to I. Finally, we put

A′ = CI1 ∨ . . . ∨ CIm

Give reasons for the claim that A′ ∈ VF(Q) is a disjunctive normal form logically
equivalent to A (cf. Exercise. . .)

A special case of the Completeness Theorem deals with the provability of tautologies.
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Completeness Theorem for Tautologies. [E. Post] For every propositional form
A ∈ VF(P ), we have ⊨ A if and only if ⊢ A; in other words, A is a tautology if and
only if A is provable just from the logical axioms.

Demonstration. We just show that every tautology is provable from the logical axioms;
the converse follows from the Soundness Theorem.
Let A ∈ VF(p1, . . . , pn). Since A is a tautology, I(A) = 1 and AI ≈ A for every truth

evaluation I : {p1, . . . , pn} → {0, 1}. By the Interpretation Lemma,{
pI1, . . . , p

I
n

}
⊢ A

For any truth evaluation J : {p1, . . . , pn−1} → {0, 1}, both possibilities I1(pn) = 1,
I2(pn) = 0 jointly with the condition I1(pk) = I2(pk) = J(pk), for k < n, produce
interpretations I1, I2 : {p1, . . . , pn} → {0, 1}. Therefore, both{

pJ1 . . . , p
J
n−1, pn

}
⊢ A{

pJ1 . . . , p
J
n−1,¬pn

}
⊢ A

According to Corollary on Proof by Distinct Cases this implies{
pJ1 , . . . , p

J
n−1

}
⊢ A

Repeating this procedure we finally get ⊢ A.

A theory T ⊆ VF(P ) is called complete if it is consistent and for every propositional
form A ∈ VF(P ) we have T ⊢ A or T ⊢ ¬A. In other words, T is complete if and only if
for every propositional form A exactly one of the two possibilities T ⊢ A, T ⊢ ¬A takes
place.
Next we show an alternative version of the Completeness Theorem.

Completeness Theorem. [Alternative version] Every consistent theory T ⊆ VF(P )
has an interpretation.

The reader is asked to realize that also the other way round, if a theory has an
interpretation then it is necessarily consistent; in other words, a contradictory theory
has no interpretation. (This is the alternative version of the Soundness Theorem.)

Demonstration. Any interpretation I of a consistent theory T has to satisfy

I(A) =

{
1 if T ⊢ A

0 if T ⊢ ¬A

Since T is consistent, T ⊢ A and T ⊢ ¬A cannot happen at once for any A ∈ VF(P ).
On the other hand, unless T is complete, we cannot guarantee that we always have
either T ⊢ A or T ⊢ ¬A, i.e., the value I(A) need not be defined for every A ∈ VF(P ).
However, if T is complete then the above casework defines an interpretation of T , indeed.
In other words, a complete theory T has exactly one interpretation.
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In the general case, since the set VF(P ) of all propositional forms is countable, it
allows for some enumeration VF(P ) = {A0, A1, . . . , An, . . . }. Now we define a sequence
of theories T0 ⊆ T1 ⊆ . . . ⊆ Tn ⊆ Tn+1 ⊆ . . . recursively:

T0 = T and Tn+1 =

{
Tn ∪ {An} if Tn ∪ {An} is consistent
Tn ∪ {¬An} if Tn ∪ {An} is contradictory

Obviously, Tn ⊆ Tn+1 for each n. Let us show by induction on n that every Tn is a
consistent theory. T0 = T is consistent by the initial assumption. Assuming that Tn is
consistent, Tn+1 could be inconsistent only in case that both the theories Tn ∪ {An},
Tn ∪ {¬An} were contradictory. By the Corollary on Proof by Contradiction this would
mean that both Tn ⊢ ¬An and Tn ⊢ An. However, this is impossible, as Tn is consistent.
Next we show that T̂ =

∪
n∈N Tn is a complete theory. It is easy to realize that T̂ is

consistent. Indeed, if T̂ were inconsistent then already some of the theories Tn would
inconsistent as well (this is left to the reader as an exercise— see also the proof of the
Compactness Theorem). It remains to show that, for each n, either T̂ ⊢ An or T̂ ⊢ ¬An.
This is equivalent to showing that T̂ ̸⊢ ¬An implies T̂ ⊢ An. If T̂ ̸⊢ ¬An then T̂ ∪ {An}
is consistent, and Tn ∪ {An} ⊆ T̂ ∪ {An} is consistent, as well. Then An ∈ Tn+1, hence
Tn+1 ⊢ An, and, since Tn+1 ⊆ T̂ , also T̂ ⊢ An.
Thus the unique interpretation I of the complete theory T̂ is an interpretation of T ,

as well.

Remark. The reader should notice that the above casework is not necessarily the only
way how the sequence of theories (Tn)n∈N extending T , leading to a complete theory
T̂ =

∪
Tn, and the interpretation I could be defined. In each step when neither Tn ⊢ An

nor Tn ⊢ ¬An, we are free to choose either Tn+1 = Tn ∪ {An} or Tn+1 = Tn ∪ {¬An}.

Exercise. Let I : P → {0, 1} be any truth evaluation. Let us denote

Th(I) =
{
pI : p ∈ P

}
= {p ∈ P : I(p) = 1} ∪ {¬p : p ∈ P, I(p) = 0}

the theory of I. Demonstrate the following facts:
(a) Th(I) is a complete propositional theory.
(b) For any propositional form A ∈ VF(P ) the following conditions are equivalent:

(i) I(A) = 1
(ii) Th(I) ⊢ A
(iii) Th(I) ⊨ A

Now, we can prove the original form of the Completeness Theorem. We state it in a
way comprising the Soundness Theorem, as well.

Completeness Theorem. Let T ⊆ VF(P ) be a theory. Then, for every propositional
form B ∈ VF(P ), T ⊨ B if and only if T ⊢ B.

Demonstration. If T ⊢ B then T ⊨ B by the Soundness Theorem. To show the converse,
assume that T ⊨ B, nevertheless T ̸⊢ B. By the Theorem on Proof by Contradiction,
this means that the theory T ∪ {¬B} is consistent. Then, according to the Alternative



19

Version of the Completeness Theorem, T ∪ {¬B} has an interpretation I. Then I is
an interpretation of the theory T such that I(¬B) = 1, i.e., I(B) = 0. However, since
T ⊨ B, we have J(B) = 1 for every interpretation J of T ; in particular, I(B) = 1. This
contradiction proves that T ⊢ B.

Finally, let us record the following consequence of the Completeness Theorem.

Compactness Theorem. Let T ⊆ VF(P ) be a theory. Then T has an interpretation
if and only if every finite subtheory T0 of T has an interpretation.

Demonstration. By the Completeness Theorem, T has an interpretation if and only if
T is consistent. Similarly, every finite subtheory T0 ⊆ T has an interpretation if and
only if every finite subtheory T0 ⊆ T is consistent. Thus it is enough to realize that T
is consistent if and only if every finite subtheory T0 of T is consistent. Obviously, if T
is consistent then so are all its subtheories (and not just the finite ones). The other way
round, if T is inconsistent, then any proofs of some couple of contradicting propositional
forms B, ¬B in T involve just finitely many specific axioms of T . Putting them together
we obtain a finite subtheory T0 ⊆ T which is already contradictory.

We have formulated and proved the Compactness Theorem in Propositional Calculus
mainly with the aim to prepare the way for the Compactness Theorem in Predicate
Calculus to come later on. However, the Propositional Calculus version of the Compact-
ness Theorem lacks the importance and the plentitude of consequences of its Predicate
Calculus version.
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Appendix

Axiomatization of Propositional Calculus Using Four Logical Connectives

For completeness sake we include the axiomatization of Propostional Calculus using all
the usual logical connectives ¬, ∧, ∨ and ⇒; the remaining connective ⇔ is introduced
via the logical equivalence

A ⇔ B ≡ (A ⇒ B) ∧ (B ⇒ A)

i.e., the left hand expression serves as the abbreviation for the right hand one. The
corresponding list of logical axioms consists of ten axiom schemes. The only inference
rule is Modus Ponens, again.

Logical axioms. (10 axiom schemes)
For any propositional formsA, B, C, the following propositional forms are logical axioms:

(LAx 1) A ⇒ (B ⇒ A)
(LAx 2) (A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C))
(LAx 3) (A ∧B)⇒ A
(LAx 4) (A ∧B)⇒ B
(LAx 5) A ⇒ (B ⇒ (A ∧B))
(LAx 6) A ⇒ (A ∨B)
(LAx 7) B ⇒ (A ∨B)
(LAx 8) ((A ⇒ C) ∧ (B ⇒ C))⇒ ((A ∨B)⇒ C))
(LAx 9) ((A ⇒ B) ∧ (A ⇒ ¬B))⇒ ¬A)
(LAx 10) A ∨ ¬A

Deduction rule Modus Ponens

(MP)
A, A ⇒ B

B
(from A and A ⇒ B infer B)

Exercise. Show that all the above logical axioms are tautologies and explain their
intuitive meaning.
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